Uso de supercondensadores para brindar soporte de frecuencia en una microrred aislada

Danny Ochoa
Edisson Villa
Vinicio Iñiguez
Ciro Larco
Rodrigo Sempértegui
Resumen

Este artículo presenta la implementación práctica de una técnica de control de frecuencia (inercia virtual) en un sistema de almacenamiento energético basado en el uso de supercondensadores (SAE-SC). La propuesta estuvo diseñada para brindar soporte de frecuencia a una microrred eléctrica aislada real que integra fuentes de generación renovable (solar fotovoltaica, 15 kWp), generación síncrona convencional (térmico diésel, 44 kVA) y sistemas de almacenamiento energético (SAE-SC, 30 kW). Tomando como caso base la operación en condiciones normales de una microrred híbrida solar-diésel (una situación típica de sistemas insulares), se comprobó la efectividad de las labores de soporte de frecuencia provisto por el SAE-SC y se evaluó la resiliencia de la microrred en términos de esta variable. Los resultados experimentales mostraron que la implementación de la propuesta permitió reducir las fluctuaciones de frecuencia de la microrred en un 30%, representando una mejora significativa en la calidad del suministro eléctrico. Los experimentos se llevaron a cabo en el Laboratorio de Micro-Red del Centro Científico, Tecnológico y de Investigación Balzay (CCTI-B) de la Universidad de Cuenca.

DESCARGAS
Los datos de descarga aún no están disponibles.
Cómo citar
Uso de supercondensadores para brindar soporte de frecuencia en una microrred aislada. (2022). Revista Tecnológica - ESPOL, 34(4), 174-185. https://doi.org/10.37815/rte.v34n4.961
Biografía del autor/a

Danny Ochoa, Universidad de Cuenca

Es Ingeniero Eléctrico por la Universidad de Cuenca, Ecuador, desde 2011. En 2014, obtuvo el título de Máster Universitario en Ingeniería Eléctrica por la Universidad Politécnica de Madrid (UPM), España. Es Doctor en Ingeniería Eléctrica y Electrónica por la UPM desde 2019. Sus áreas de interés son: integración de aerogeneradores de velocidad variable a la red eléctrica, operación, control y servicios complementarios en sistemas eléctricos de potencia y microrredes

Referencias

Ahmed, I., Rehan, M., Basit, A., & Hong, K.-S. (2022). Greenhouse gases emission reduction for electric power generation sector by efficient dispatching of thermal plants integrated with renewable systems. Scientific Reports, 12(1). Scopus. https://doi.org/10.1038/s41598-022-15983-0

Ali, H., Magdy, G., & Xu, D. (2021). A new optimal robust controller for frequency stability of interconnected hybrid microgrids considering non-inertia sources and uncertainties. International Journal of Electrical Power & Energy Systems, 128, 106651. https://doi.org/10.1016/j.ijepes.2020.106651

Bevrani, H., Ise, T., & Miura, Y. (2014). Virtual synchronous generators: A survey and new perspectives. International Journal of Electrical Power & Energy Systems, 54, 244-254. https://doi.org/10.1016/j.ijepes.2013.07.009

D’Arco, S., Suul, J. A., & Fosso, O. B. (2015). A Virtual Synchronous Machine implementation for distributed control of power converters in SmartGrids. Electric Power Systems Research, 122, 180-197. https://doi.org/10.1016/j.epsr.2015.01.001

Espinoza, J. L., González, L. G., & Sempértegui, R. (2017). Micro grid laboratory as a tool for research on non-conventional energy sources in Ecuador. 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 1-7. https://doi.org/10.1109/ROPEC.2017.8261615

Fernández-Guillamón, A., Martínez-Lucas, G., Molina-García, Á., & Sarasua, J.-I. (2020). Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems. Sustainability, 12(18), 7750. https://doi.org/10.3390/su12187750

Győrvári, B., & Vokony, I. (2017). Technical issues of solar- and gas engine based MicroGrids: Assessment on feasibility by using present technologies. 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 1-6. https://doi.org/10.1109/EEEIC.2017.7977650

Martinez, S., Mendonca, H., de Castro, R. M., & Ochoa, D. (2019). Contribution of electric vehicles to power system ancillary services beyond distributed energy storage. En N. Kishor & J. Fraile-Ardanuy (Eds.), ICT for Electric Vehicle Integration with the Smart Grid (pp. 265-284). Institution of Engineering and Technology. https://doi.org/10.1049/PBTR016E_ch10

Martínez-Lucas, G., Sarasúa, J. I., Pérez-Díaz, J. I., Martínez, S., & Ochoa, D. (2020). Analysis of the Implementation of the Primary and/or Inertial Frequency Control in Variable Speed Wind Turbines in an Isolated Power System with High Renewable Penetration. Case Study: El Hierro Power System. Electronics, 9(6), 901. https://doi.org/10.3390/electronics9060901

Ochoa, D. (2021). Modelo simplificado de una interfaz de conexión a la red basada en un convertidor electrónico de potencia para estudios de red en régimen dinámico. Ingenius, 26, 87-98. https://doi.org/10.17163/ingenius.n26.2021.08

Ochoa, D., & Martinez, S. (2018). Proposals for Enhancing Frequency Control in Weak and Isolated Power Systems: Application to the Wind-Diesel Power System of San Cristobal Island-Ecuador. Energies, 11(4), 910. https://doi.org/10.3390/en11040910

Ochoa, D., & Martinez, S. (2019). Modeling an Isolated Hybrid Wind-Diesel Power System for Performing Frequency Control Studies. A Case of Study: San Cristobal Island, Galapagos–Ecuador. IEEE Latin America Transactions, 17(05), 775-787. https://doi.org/10.1109/TLA.2019.8891946

Pazmiño, I., Martinez, S., & Ochoa, D. (2021). Analysis of Control Strategies Based on Virtual Inertia for the Improvement of Frequency Stability in an Islanded Grid with Wind Generators and Battery Energy Storage Systems. Energies, 14(3), 698. https://doi.org/10.3390/en14030698

Pazmiño, I., Ochoa, D., Minaya, E. P., & Mera, H. P. (2022). Use of Battery Energy Storage Systems to Enhance the Frequency Stability of an Islanded Microgrid Based on Hybrid Photovoltaic-Diesel Generation. En M. I. A. Chauvin, M. Botto-Tobar, A. Díaz Cadena, & S. Montes León (Eds.), Sustainability, Energy and City (Vol. 379, pp. 48-58). Springer International Publishing. https://doi.org/10.1007/978-3-030-94262-5_5

Rey, J. M., Vera, G. A., Acevedo-Rueda, P., Solano, J., Mantilla, M. A., Llanos, J., & Sáez, D. (2022). A Review of Microgrids in Latin America: Laboratories and Test Systems. IEEE Latin America Transactions, 20(6), 1000-1011. https://doi.org/10.1109/TLA.2022.9757743

Samanta, H., Pramanik, M., Das, A., Bhattacharjee, A., Bhattacharya, K. D., Deb, N. K., Sengupta, S., & Saha, H. (2019). Development of a novel controller for DC-DC boost converter for DC Microgrid. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), 1124-1129. https://doi.org/10.1109/TENCON.2019.8929521

Sarmiento-Vintimilla, J. C., Torres, E., Larruskain, D. M., & Pérez-Molina, M. J. (2022). Applications, Operational Architectures and Development of Virtual Power Plants as a Strategy to Facilitate the Integration of Distributed Energy Resources. Energies, 15(3), 775. https://doi.org/10.3390/en15030775

Smith, M., & Ton, D. (2013). Key Connections: The U.S. Department of Energy?s Microgrid Initiative. IEEE Power and Energy Magazine, 11(4), 22-27. https://doi.org/10.1109/MPE.2013.2258276

Stadler, M., & Naslé, A. (2019). Planning and implementation of bankable microgrids. The Electricity Journal, 32(5), 24-29. https://doi.org/10.1016/j.tej.2019.05.004

Tamrakar, U., Shrestha, D., Maharjan, M., Bhattarai, B. P., Hansen, T. M., & Tonkoski, R. (2017). Virtual Inertia: Current Trends and Future Directions. Applied Sciences, 7(7), 654. https://doi.org/10.3390/app7070654

Thomsen, B., Guerrero, J. M., & Thøgersen, P. B. (2014). Faroe Islands wind-powered space heating microgrid using self-excited 220-kW induction generator. IEEE Transactions on Sustainable Energy, 5(4), 1361-1366. Scopus. https://doi.org/10.1109/TSTE.2014.2339373

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.